Comparing simulations of lipid bilayers to scattering data: the GROMOS 43A1-S3 force field.

نویسندگان

  • Anthony R Braun
  • Jonathan N Sachs
  • John F Nagle
چکیده

Simulations of DOPC at T = 303 K were performed using the united atom force field 43A1-S3 at six fixed projected areas, A(P) = 62, 64, 66, 68, 70, and 72 Å(2), as well as a tensionless simulation that produced an average A(NPT) = 65.8 Å(2). After a small undulation correction for the system size consisting of 288 lipids, results were compared to experimental data. The best, and excellent, fit to neutron scattering data occurs at an interpolated A(N) = 66.6 Å(2) and the best, but not as good, fit to the more extensive X-ray scattering data occurs at A(X) = 68.7 Å(2). The distance ΔDB-H between the Gibbs dividing surface for water and the peak in the electron density profile agrees with scattering experiments. The calculated area compressibility K(A) = 277 ± 10 mN/m is in excellent agreement with the micromechanical experiment. The volume per lipid V(L) is smaller than volume experiments which suggests a workaround that raises all the areas by about 1.5%. Although A(X) ≠ A(N) ≠ A(NPT), this force field obtains acceptable agreement with experiment for A(L) = 67.5 Å(2) (68.5 Å(2) in the workaround), which we suggest is a better DOPC result from 43A1-S3 simulations than its value from the tensionless NPT simulation. However, nonsimulation modeling obtains better simultaneous fits to both kinds of scattering data, which suggests that the force fields can still be improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins

The GROMOS 54A8 force field [Reif et al. J. Chem. Theory Comput.2012, 8, 3705-3723] is the first of its kind to contain nonbonded parameters for charged amino acid side chains that are derived in a rigorously thermodynamic fashion, namely a calibration against single-ion hydration free energies. Considering charged moieties in solution, the most decisive signature of the GROMOS 54A8 force field...

متن کامل

An improved nucleic acid parameter set for the GROMOS force field

Over the past decades, the GROMOS force field for biomolecular simulation has primarily been developed for performing molecular dynamics (MD) simulations of polypeptides and, to a lesser extent, sugars. When applied to DNA, the 43A1 and 45A3 parameter sets of the years 1996 and 2001 produced rather flexible double-helical structures, in which the Watson-Crick hydrogen-bonding content was more l...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase

Over the past 4 years the GROMOS96 force field has been successfully used in biomolecular simulations, for example in peptide folding studies and detailed protein investigations, but no applications to lipid systems have been published yet. Here we provide a detailed investigation of aliphatic liquid systems. For liquids of larger aliphatic chains, n-heptane and longer, the standard GROMOS96 pa...

متن کامل

Simulation study of the structure and phase behavior of ceramide bilayers and the role of lipid head group chemistry.

Ceramides are known to be a key component of the stratum corneum, the outermost protective layer of the skin that controls barrier function. In this work, molecular dynamics simulations are used to examine the behavior of ceramide bilayers, focusing on non-hydroxy sphingosine (NS) and non-hydroxy phytosphingosine (NP) ceramides. Here, we propose a modified version of the CHARMM force field for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 117 17  شماره 

صفحات  -

تاریخ انتشار 2013